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bstract

The inverse dielectric function 1/ε(q) is newly obtained in terms of the charge–charge correlation functions SZZ(q) by the re-examined theory
f dielectric screening in molten salts. The new theory is applied to the molten noble-metal halides, i.e. AgBr and CuBr, in order to obtain SZZ(q),
nd in due course, 1/ε(q). The inter-ionic screened potential φ+−(r) is estimated using 1/ε(q). The obtained screened potential φ+−(r) is treated
sc sc

s the potential of mean force to obtain the partial pair distribution function between cation and anion g+−(r). The results are compared to those
btained by diffraction experiments and molecular dynamics simulation. The deviation from Nernst–Einstein relation in the transport properties is
lso discussed.

2007 Elsevier B.V. All rights reserved.
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. Introduction

The dielectric screening properties in molten salts have been
matter of particular interest. There is a close relationship

etween the dielectric screening and the charge fluctuation of
he constituents of the substances. The charge–charge structure
actor, or SZZ(q), defined by Hansen and McDonald [1] indicates
he charge fluctuation in a molten salt. SZZ(q) can be obtained
rom their partial structure factors by means of diffraction exper-
ments or simulation [2]. The dielectric screening function ε(q)
f a mono-valent molten salt has been represented by SZZ(q) as
ollows:

1

ε(q)
= 1 −

{
4πe2βnSZZ(q)

q2

}
(1)

here β = 1/kBT and n is the number density of constituent ions

1].

Several attempts have been made at deriving the dielectric
creening functions from these experimental structure factors.
owever, the obtained results indicate a negative sign in the
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mall q region, which shows the difficulty in the appropriate
xplanation of the results [3,4], because ε(q) must be positive
n the meaning of the potential screening. In this situation, we
ave proposed the new equation of ε(q) and SZZ(q) in molten
alts which is different from Eq. (1) and applied it to molten
lkali-halides [5].

In order to test the new theory, we focus on molten noble-
etal halides, e.g. AgBr and CuBr. It is well known that the

oble-metal halides are the typical example of the superionic
onductors, which is a group of substances that exhibit high
alues of ionic conductivity while in the solid state. The mech-
nism of high ionic conductivity in the superionic conductors
as been widely investigated because of their novel physi-
al behavior and technological importance [6]. CuBr shows
uperionic conduction in its alpha phase, where copper ions
tatistically distribute around the bromine bcc cubic, and cop-
er ions can move one site to another. However, AgBr has
rock salt structure in its solid state and does not exhibit

uperionic conduction, though it is also one of the noble-
etal halides. We have investigated the structural and transport
roperties of noble-metal halides by molecular dynamics sim-
lations [7,8]. In this study, as a serial work, we apply the
ew theory to molten AgBr and CuBr to examine the dielec-
ric screening effect in molten phase, because the screened

mailto:matsu@nagaoka-ct.ac.jp
dx.doi.org/10.1016/j.jallcom.2006.12.161


ys an

p
t

2
a

r
s
m
s
t
o
o
T

S

w
f
i

S

S
a
m

f
e
e
t
e
b
B
i
f
e

w

c

E

∇

ρ

q

e
e
T

e

w
t
o

χ

b

w
t
d

i
t
p
c
t
t
t
i
b
i

b
t
w
q

l
c
r
c
T
f

l

S. Matsunaga et al. / Journal of Allo

otentials are the fundamental subject of the transport proper-
ies.

. Brief summary of charge–charge structure factors in
molten salt

The theory of the dielectric screening in molten salt has been
e-examined using SZZ(q) in the previous work [5]. We briefly
ummarize its procedure as follows. We consider a typical binary
olten salt system A�B�. N� and N� stand for the number of ion

pecies + and−. With the total number of particles N, the concen-
ration of species � is expressed as x� = N�/N = 0.5. The densities
f particles are n+ = n− = n/2 and n = N/V, where V is the volume
f the system. The effective charges of ions are z+ = −z− = z.
hen, SZZ(q) is written as follows [1]:

ZZ(q) = 〈ρZ
q ρZ−q〉
N

= Σ�Σ�z�z�S��(q) (2)

here S��(q) is a partial structure factor, i.e. the Fourier trans-
ormation of the pair distribution function of ion � around ion �
n r-space, g��(r). S��(q) is defined as

��(q) = x�δ�� + nx�x�

∫ ∞

0

(
sin qr

qr

)
{g��(r) − 1}4πr2 dr

(3)

��(q) and g��(r) directly reflect the ionic configuration and
re easily obtainable from neutron diffraction experiment or
olecular dynamics simulation.
In the case that an external charge eρext(r) is introduced

rom outside into this system at the position r, then a charge
ρind(r) is induced. By the Gauss’s law, the divergence of the
lectric displacement D(r) and the electric field E(r) are related
o eρext(r) and eρind(r), respectively. The screened charge is
xpressed as ρext(r)/ε. In general, the dielectric constant ε may
e extended to an isotropic r-dependent term written as ε(r).
esides, ρext(r)/ε(r) can be replaced by ρext(r) + ρind(r). Tak-

ng the ratio of the Fourier transformation of the Gauss’s law
or eρind(r) to eρext(r), the inverse dielectric function 1/ε(q) is
xpressed as follows:

1

ε(q)
= 1 +

{
ρind(q)

ρext(q)

}
(4)

here we assume ε(q) is isotropic, for simplicity.
Meanwhile, the electric potential φ(r) due to this external

harge density is defined as

(r) = −grad φ(r) (5)

Using the Gauss’s law, we have the Poisson equation, as

2φ(r) = −
{

4πeρext(r)

ε(r)

}
(6)
Putting the Fourier representations of ε(r), φ(r), ρext(r) and
ind(r), into Eq. (6) and taking r = 0, then we have

2ε(q)φ(q) = 4πeρext(q) (7)

a
i
t
a
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ρind(r) is the charge fluctuation yielded by the insertion of the
xternal charge eρext(r), where the under bar stands for vector.
herefore, eρind(r) might be expressed in the following form:

ρind(q) = χZZ(q)eφext(q) (8)

here χZZ(q) is the charge response function. On the basis of
he fluctuation dissipation theorem, χZZ(q) is expressed in terms
f SZZ(q) as [1]:

ZZ(q) = −βnSZZ(q) (9)

Putting (7) and (8) into (4), and using (9), we have the relation
etween 1/ε(q) and SZZ(q), as

1

ε(q)
= 1

1 + (κ2
s /q

2)SZZ(q)
(10)

here κ2
s = 4πe2βn. It should be emphasized that Eq. (10) is

he new relation between 1/ε(q) and SZZ(q), and it is obviously
ifferent from Eq. (1).

Eq. (10) results from an isotropic configuration of surrounded
ons. This condition can be satisfied by a symmetric configura-
ion in the short-range region in the molten salt that is almost
erfectly ionized ions such as molten alkali-halides. If the ions’
onfiguration is extremely different from an isotropic one, then
he dielectric screening may include some anisotropic effect and
he application of Eq. (10) becomes insufficient. For instance,
his effect can be seen in molten copper halides such as CuBr,
n which the oscillation of gCu–Br(r) for the distance r coincides
asically with that of gCu–Cu(r) [9]. A rather simplified revision
n such case is the insertion of a parameter δ into Eq. (10), as

1

ε(q)
= 1

1 + δ(κ2
s /q

2)SZZ(q)
(11)

The role of parameter δ is the reduction of the screening effect
y the structural anisotropy. Therefore, the value of δ may be in
he range of 0 < δ ≤ 1 and the condition δ = 1 may occur in a
ell-symmetric configuration. In the region of higher values of
> 10 A−1, we usually take SZZ(q) ∼= 1, hence Eq. (11) becomes:

1

ε(q)
= 1

1 + δ(κ2
s /q

2)
(12)

Meanwhile, the inverse dielectric function in the long wave-
ength limit is already well known by the theory of classical one
omponent plasma [1,10]. Starting from the continuity equation
elating to the charge and taking Fourier transforms under the
ondition of long wavelength limit, and using the well-known
homas–Fermi type screening potential, the inverse dielectric

unction near the long wavelength limit is written as follows:

1

ε(q)
= 1

1 + (λ2
s /q

2)
(13)

As shown in Eq. (13), 1/ε(q) in its higher q-region and very
ower q-region is expressed by a similar form as Eq. (12),

lthough their screening constants are quite different. In the
ntermediate region, 1/ε(q) exhibits an oscillating behavior due
o the effect of SZZ(q). It is apparent that Eq. (12) is equal to zero
t q = 0. And therefore, 1/ε(q) is in the region 0 ≤ 1/ε(q) ≤ 1 for
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Fig. 1. SZZ(q) of molten AgBr (solid line) and CuBr (dashed line).

ny positive values of SZZ(q). At this point, it should be stressed
hat the validity of Eqs. (10) and (12) is also confirmed by this
act in the meaning of screening; 1/ε(q) remains positive for all
ositive q value.

As mentioned before, Eq. (10) or Eq. (11) is useful to derive
/ε(q) from the experimental partial structure factors. Eq. (3) is
pplicable to deriving 1/ε(q) from g��(r) by computer simula-
ion. As examples of 1/ε(q) for binary ionic melts, we will show
he results of 1/ε(q) using experimental SZZ(q) for AgBr and
uBr. As mentioned previously, SZZ(q) is related to structure

actors and pair distribution functions by Eq. (2). In this case,
he summation in Eq. (2) is taken for ion species Ag or Cu and
r. The obtained SZZ(q) for molten AgBr at 753 K and CuBr at

10 K are shown in Fig. 1. We can see the significant first peaks
n SZZ(q) at about 1.8 and 2.0 Å−1 for molten AgBr and CuBr,
espectively. These peaks correspond to the oscillations of par-
ial structure factors [2,9]. By substituting these SZZ(q) into Eq.

ig. 2. 1/ε(q) of molten AgBr (solid line) and CuBr (dashed line) with 1/(1 +
(κ2

s /q
2)) for AgBr (dotted line) and CuBr (dashed and double dotted line) for

omparison.
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11), We can obtain the inverse dielectric function 1/ε(q). The
alculated results are shown in Fig. 2 with the calculated curve
y Eq. (12) for comparison. It is clearly recognized that 1/ε(q)
atisfies the condition 0 ≤ 1/ε(q) ≤ 1. We can find the oscillatory
eatures and the significant minimum at around 1.8 and 2.0 Å−1

or AgBr and CuBr, respectively. These features are yielded by
he form of SZZ(q) which have large maximum and oscillation.
hese results should be attributed to the effect that an ion in
olten salts is susceptible to be surrounded by ions of opposite

ign, which yields the large charge fluctuation and screening
ffect.

. Screening effect for Coulomb potential in molten
oble-metal halides

In a molten salt, the effective screened potential between a
ation and an anion, φ+−

sc (r), may be divided into two parts, as

+−
sc (r) = φ+−

rep sc(r) + φ+−
at sc(r) (14)

ereφ+−
rep sc(r) is the direct repulsive potential between cation and

nion in the short-range distance influenced by a small amount of
creening effect, and φ+−

at sc(r) is the attractive screened potential
n the long range. Eq. (9) is a poor approximation for the repul-
ive potential because of its highly non-linear functional form.
herefore, the screening effect for the direct repulsive potential
art should be treated in a different way.

The attractive screened potential φ+−
at sc(r) is effectively

creened by the existence of other ions. However, its bare-
otential may be ascribed mainly to the form of Coulomb
nteracting potential. The attractive Coulomb potential between
n ion z+e at the origin, and another ion z−e at the distance r is

+−
at (r) = −z2e2

r
(15)

Then, the screened attractive potential in q-space is written
s follows:

+−
at sc(q) = −4πz2e2

ε(q)q2 (16)

The numerical result for φ+−
at sc(r) is given by the inverse

ourier transformation. In the region of SZZ(q) ∼ 1, Eq. (12)
s applicable. Hence, for a symmetric configuration, we have

+−
at sc(q) = − 4πz2e2

q2 + κ2
s

(17)

This equation is easily converted to the r-dependent expres-
ion as

+−
at sc(r) = −

(
z2e2

r

)
exp(−κsr) (18)

hich has the form of the product of the Coulomb potential by
he screened part.
A simple treatment of the screening effect for the repulsive
otential is the introduction of multiplicative parameter α to the
epulsive part. Thus, the effective potential between cation and
nion in the region of SZZ(q) ∼ 1 is expressed as the sum of the
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creened repulsive potential and the screened attractive potential
quation (18), which is expressed as

+−
sc (r) = α

(
B

rn

)
−

(
z2e2

r

)
exp(−κsr) (19)

Therefore, the inverse dielectric function 1/ε(q) as the screen-
ng effect can be multiplied onto the bare attractive inter-ionic
otential between two ions in the q-space and the screening
arameter α is also multiplied onto the repulsive potential in
-space to obtain the effective screened potential. It is not neces-
ary, however, to apply the dielectric function in the procedure of
he computer simulation, because the simulation itself involves
utomatically the screening behaviors and only the utilization
f appropriate bare inter-ionic potentials is required.

From above discussions, it seems interesting to obtain the
creened potential between anion and cation, Ag+ or Cu+ and
r− in molten AgBr and CuBr. Besides, the experimental pair
istribution function, i.e. gBrAg(r) and gBrCu(r) is obviously dif-
erent [2,9]. We adopt the potential by Rahman, Vashishta and
arrinello (RVP) [11] as a bare inter ionic interaction, because

t is often used for noble-metal halides. The RVP type potential
ets for i and j ions are written as

ij(r) = Hij

rnij
+ zizje

2

r
− Pij

r4 (20)

here the third term is charge–dipole interactions. The adopted
arameters are taken from literature [12,13]. The screened
otentials of molten AgBr and CuBr are obtained by the above
rocedure. The results are shown in Figs. 3 and 4, respectively.

n the calculation, we adopt the value of δ as 0.50 and 0.40, and
he value of α as 0.1 and 0.05 for AgBr and CuBr, respectively.
he reduction of the depth of potential by screening effect is
bviously recognized in Figs. 3 and 4. The characteristic oscil-

ig. 3. The screened potential between Ag–Br (dotted line) with original one
solid line). (Bottom) The screened potential is also shown with different scale
top) to show its oscillatory feature.
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ig. 4. The screened potential between Cu–Br (dotted line) with original one
solid line). (Bottom) The screened potential is also shown with different scale
top) to show its oscillatory feature.

ations are found in the screened potentials especially in molten
uBr, which may be caused by the charge fluctuation in the
istribution of ions.

. Pair distribution functions

To confirm the results of screened potentials between cations
nd anions, we calculate the pair distribution functions by the
otential of mean force U+−(r), which is defined by the following
quation in relation to g+−(r) [1]:

+−(r) = exp

[−U+−(r)

kBT

]
(21)

ere we can take the screened potential φ+−
sc (r) as U+−(r),

ecause Eq. (21) is originally suggested by weak interacting
aterials. In the previous work, we have proved that φ+−

sc (r)
nd U+−(r) are mathematically equivalent, basing our argument
n the Ornstein–Zernike equation [5]. g+−(r) are obtained by
nserting the calculated φ+−

sc (r) instead of U+−(r) into Eq. (21).
hey are shown in Figs. 5 and 6, together with those obtained
y experiment and molecular dynamics (MD) simulation. The
rst peaks of g+−(r) almost agree well, though the oscillations

n larger r region are not satisfactory reproduced. This fact may
uggest that the screening effect is considerable especially in
mall r region, i.e. about the distance to the first nearest neigh-
ors. In other words, the first nearest neighbor ions have the
ain contribution to the screening effects in molten salts.
The discrepancy in the larger r region between gij(r)’s are

ttributed to the difference between φ+−
sc (r) and U+−(r), which
ay be caused by several reasons, in addition to a margin of
alculation error in Fourier transformation. One reason is that
nly the Coulomb attractive potential is used to derive φ+−

sc at(r),
.e. the attractive part of RVP type potential—Pij/r4 is not used for
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Fig. 5. gij(r) for molten AgBr calculated using screened potential (solid line)
with that obtained by experiment (dotted line) and by MD (dashed line).
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ig. 6. gij(r) for molten CuBr calculated using screened potential (solid line)
ith that obtained by experiment (dotted line) and by MD (dashed line).

implicity. Another expected reason is that the non-symmetric
tructure in solid phase remains in molten phase, which may
bstruct the screening effect in molten phase. In spite of above
acts, however, it may be recognized that the calculated result
or φ+−

sc (r) so as to carry on the above treatment is physically
ignificant, and the obtained results are obviously affected by
creening effect.

. Deviation from Nernst–Einstein relation
In the previous sections, we have mainly discussed the
creened pair potentials in connection with the structure and
he dielectric function. In this section, we discuss the influence

f

Δ

d Compounds 452 (2008) 182–187

f the screening effect on the transport properties. It is known
hat there is a deviation from the Nernst–Einstein (NE) relation
f the transport properties in the binary molten salts, which is
efined as [10]:

= σ+ + σ− =
(

nz2e2

kBT

)
(D+ + D−)(1 − Δ) (22)

here Δ is the deviation from NE relation. The equations of
artial conductivities for cation and anion, σ+ and σ−, and the
iffusion constants, D+ and D−, in binary molten salts were
lready derived in the pervious work on the basis of the linear
esponse theory [14]. In accordance with these results, we have

= 1 − (1 − ΔBR)

[
2/α0

(1/α+) + (1/α−)

]
(23)

here

0 = n

∫ ∞

0

{
∂2φ+−

∂r2 +
(

2

r

) (
∂φ+−

∂r

)}
g+−(r)4πr2 dr

(24)

± =
(n

2

) ∫ ∞

0

[{
∂2φ±±

∂r2 +
(

2

r

) (
∂φ±±

∂r

)}
g±±(r)

+2

{
∂2φ+−

∂r2 +
(

2

r

) (
∂φ+−

∂r

)}
g+−(r)

]
4πr2 dr (25)

nd

BR =
(

4πn

3kBT

) ∫ ∞

d

(
∂φ+−(r)

∂r

)
g+−(r)r3 dr (26)

here φij(r) is an effective inter-ionic potential between ions i
nd j.

In Eq. (26), we can approximate that the parameter d is equal
o the hard-core contact distance between cation and anion on
he condition that both ionic sizes are rigid. This assumption,
owever, may not be always valid in the case of heavier weight
tom. In this calculation, we will use the first maximum position
f g+−(r) as the distance of ion’s contact. The quantity ΔBR was
btained by Berne and Rice [15], though recently certified by
resent authors in a different way [14]. ΔBR is essentially caused
y an asymmetric distribution of the surrounded ions around the
entered ion under an applied external field. Since it has been
ound that values of α0, α+ and α− are numerically close to one
nother, we can take Δ ∼ ΔBR as the deviation from the NE
elation in a molten salt.

In the region of r > d, the differentiation of potential
∂ϕ+−(r)/∂r) shown in above equations is equal to the mean
orce acting on the ion at the origin from other ion of opposite
ign located at the distance r, and therefore, we have to use the
ffective screened potential as φ+−(r) in above equations [14].
ence we can use the potential of mean force U+−(r), instead
f φ+−(r) in Eq. (26). With Eq. (21), Eq. (26) is converted to the

ollowing form, as

BR = −
(

4πn

3

) ∫ ∞

d

(
∂g+−(r)

∂r

)
r3 dr (27)
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Table 1
Deviation from Nernst–Einstein relation in molten AgBr (753 K) and CuBr
(810 K); ΔBR (calc), ΔBR (MD) by Eq. (27), ΔBR (exp), and Δ (MD*) from
Refs. [12,13]

AgBr CuBr

ΔBR (calc) −0.48 −0.44
ΔBR (MD) −0.45 −0.40
Δ

Δ

�

c
c
a

g
t
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e
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R

[

[
[

BR (exp) −0.41 −0.49
(MD*) −0.42 −0.46

(MD*) was calculated using correlation functions.

Using the simulated g+−(r) or U+−(r) in molten salts, we can
alculate the deviation from NE relation, ΔBR. In fact, we have
alculated ΔBR using Eq. (27) with obtained screened potentials
nd gij(r) using Eq. (21), or gij(r) obtained by experiment.

Using Eq. (27), the value of ΔBR also can be estimated from
ij(r) obtained by MD. The procedure of MD simulation is essen-
ially same as the previous works [7,8]. We briefly describe as
ollows. The MD calculations are carried out for AgBr and CuBr
sing 500 atoms (250 cations and 250 anions) placed in a cubic
ell. The periodic boundary condition is used. The Coulomb
nteraction is calculated by the Ewald method [16] to avoid a

argin of error yield by cutting of the long tail of Coulomb
otential. The calculation of the structure is curried out on the
ondition that the number of the particles, the volume of the
ell and the total energy of the system (NVE) are constant. The
btained g+−(r) to r ∼ 12 Å are shown in Figs. 5 and 6, which
gree well with those in literature [12,13]. Results of ΔBR for
olten AgBr and CuBr are shown in Table 1 with the values

aken from literature [12,13]. The values agree within about 20%
rror, which suggests the consistency of the theory of screening
ffect on the structure and the transport properties in molten
alts.

. Conclusion

The theory of dielectric screening in molten salt has been re-

xamined with the new relation between SZZ(q) and 1/ε(q). The
heory has been applied to molten AgBr and CuBr to examine the
creening effect. Screened attractive potentials between cations
nd anions have been obtained by inverse Fourier transformation

[

[
[
[

d Compounds 452 (2008) 182–187 187

n q-space. The estimated screened potential has been used as
potential of mean force in order to obtain g+−(r). The results
ave agreed well with those obtained by experiment and MD
imulation especially in small r region. The deviation from the
ernst–Einstein relation is also obtained. The discussions and

he theoretical results from various points of view suggest the
onsistency of the theory.
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