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Abstract

The inverse dielectric function 1/e(g) is newly obtained in terms of the charge—charge correlation functions Szz(q) by the re-examined theory
of dielectric screening in molten salts. The new theory is applied to the molten noble-metal halides, i.e. AgBr and CuBr, in order to obtain Szz(g),
and in due course, 1/e(g). The inter-ionic screened potential ¢~ (r) is estimated using 1/¢(g). The obtained screened potential ¢S~ (r) is treated
as the potential of mean force to obtain the partial pair distribution function between cation and anion g,_(r). The results are compared to those
obtained by diffraction experiments and molecular dynamics simulation. The deviation from Nernst—Einstein relation in the transport properties is

also discussed.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Dielectric screening; Charge—charge structure factor; Noble-metal halides; Molecular dynamics simulation

1. Introduction

The dielectric screening properties in molten salts have been
a matter of particular interest. There is a close relationship
between the dielectric screening and the charge fluctuation of
the constituents of the substances. The charge—charge structure
factor, or S7z7(q), defined by Hansen and McDonald [1] indicates
the charge fluctuation in a molten salt. Szz(q) can be obtained
from their partial structure factors by means of diffraction exper-
iments or simulation [2]. The dielectric screening function &(q)
of a mono-valent molten salt has been represented by Szz(g) as
follows:

L, {4ne2ﬂnszz(q)}
e(q) q*
where 8= 1/kgT and n is the number density of constituent ions
(1].

Several attempts have been made at deriving the dielectric
screening functions from these experimental structure factors.
However, the obtained results indicate a negative sign in the
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small g region, which shows the difficulty in the appropriate
explanation of the results [3,4], because £(g) must be positive
in the meaning of the potential screening. In this situation, we
have proposed the new equation of &(g) and Szz(g) in molten
salts which is different from Eq. (1) and applied it to molten
alkali-halides [5].

In order to test the new theory, we focus on molten noble-
metal halides, e.g. AgBr and CuBr. It is well known that the
noble-metal halides are the typical example of the superionic
conductors, which is a group of substances that exhibit high
values of ionic conductivity while in the solid state. The mech-
anism of high ionic conductivity in the superionic conductors
has been widely investigated because of their novel physi-
cal behavior and technological importance [6]. CuBr shows
superionic conduction in its alpha phase, where copper ions
statistically distribute around the bromine bcc cubic, and cop-
per ions can move one site to another. However, AgBr has
a rock salt structure in its solid state and does not exhibit
superionic conduction, though it is also one of the noble-
metal halides. We have investigated the structural and transport
properties of noble-metal halides by molecular dynamics sim-
ulations [7,8]. In this study, as a serial work, we apply the
new theory to molten AgBr and CuBr to examine the dielec-
tric screening effect in molten phase, because the screened
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potentials are the fundamental subject of the transport proper-
ties.

2. Brief summary of charge—charge structure factors in
a molten salt

The theory of the dielectric screening in molten salt has been
re-examined using Szz(g) in the previous work [5]. We briefly
summarize its procedure as follows. We consider a typical binary
molten salt system A, B),. N,, and N}, stand for the number of ion
species + and —. With the total number of particles N, the concen-
tration of species v is expressed as x,, = N,,/N=0.5. The densities
of particles are n* =n~ =n/2 and n= N/V, where V is the volume
of the system. The effective charges of ions are z¥=—z" =z.
Then, Szz(q) is written as follows [1]:

(pZp%,)
Szz(q) = T = Evzuzvzusvu(q) 2
where S,,,(¢) is a partial structure factor, i.e. the Fourier trans-
formation of the pair distribution function of ion v around ion

in r-space, gy (7). Sy (q) is defined as

sin gr
qr

) {guu(r) — Y4mr? dr
(3)

Sun(q) and gy (r) directly reflect the ionic configuration and
are easily obtainable from neutron diffraction experiment or
molecular dynamics simulation.

In the case that an external charge epex(r) is introduced
from outside into this system at the position r, then a charge
epind(r) is induced. By the Gauss’s law, the divergence of the
electric displacement D(r) and the electric field E(r) are related
to epext(r) and epjng(r), respectively. The screened charge is
expressed as pex(r)/e. In general, the dielectric constant € may
be extended to an isotropic r-dependent term written as &(r).
Besides, pext(r)/e(r) can be replaced by pex(T) + pinda(r). Tak-
ing the ratio of the Fourier transformation of the Gauss’s law
for eping(r) to epext(r), the inverse dielectric function 1/e(g) is
expressed as follows:

1 Pind(Q)}
g nd'D 4
o T { Pe(@) @

where we assume &(g) is isotropic, for simplicity.
Meanwhile, the electric potential ¢(r) due to this external
charge density is defined as

o0
Sup(q) = X6y, + nxvxu/ (
0

E(r) = —grad ¢(r) 5
Using the Gauss’s law, we have the Poisson equation, as
4
V2(r) = — TePext(r) ©)
e(r)

Putting the Fourier representations of &(r), ¢(r), pex¢(r) and
pind(T), into Eq. (6) and taking r =0, then we have

P e(@)p(q) = 4mepexi(q) @)

epind(r) is the charge fluctuation yielded by the insertion of the
external charge epex(r), where the under bar stands for vector.
Therefore, epinq(r) might be expressed in the following form:

epind(q) = Xxzz(q)ePext(q) ®)

where xzz(g) is the charge response function. On the basis of
the fluctuation dissipation theorem, xzz(g) is expressed in terms
of Szz(q) as [1]:

xzz(q) = —pBnSzz(q) 9

Putting (7) and (8) into (4), and using (9), we have the relation
between 1/e(g) and Szz(q), as

1 1
elq) 1+ (2/4*)S72(q)

where Kf = 4me?Bn. It should be emphasized that Eq. (10) is
the new relation between 1/¢(g) and Szz(g), and it is obviously
different from Eq. (1).

Eq. (10) results from an isotropic configuration of surrounded
ions. This condition can be satisfied by a symmetric configura-
tion in the short-range region in the molten salt that is almost
perfectly ionized ions such as molten alkali-halides. If the ions’
configuration is extremely different from an isotropic one, then
the dielectric screening may include some anisotropic effect and
the application of Eq. (10) becomes insufficient. For instance,
this effect can be seen in molten copper halides such as CuBr,
in which the oscillation of gcy_p;(r) for the distance r coincides
basically with that of gcy-cu(7) [9]. A rather simplified revision
in such case is the insertion of a parameter ¢ into Eq. (10), as

1 1
eq)  1+82/q*)Sz2(9)

The role of parameter § is the reduction of the screening effect
by the structural anisotropy. Therefore, the value of § may be in
the range of 0<§ <1 and the condition §=1 may occur in a
well-symmetric configuration. In the region of higher values of
g>10A~!, weusually take Sz7(¢) = 1, hence Eq. (11) becomes:

1 1
eq)  1+82/q%)

Meanwhile, the inverse dielectric function in the long wave-
length limit is already well known by the theory of classical one
component plasma [1,10]. Starting from the continuity equation
relating to the charge and taking Fourier transforms under the
condition of long wavelength limit, and using the well-known
Thomas—Fermi type screening potential, the inverse dielectric
function near the long wavelength limit is written as follows:

L1
elq) 1+ (2/qY)

As shown in Eq. (13), 1/e(g) in its higher g-region and very
lower g-region is expressed by a similar form as Eq. (12),
although their screening constants are quite different. In the
intermediate region, 1/e(q) exhibits an oscillating behavior due
to the effect of Szz(q). It is apparent that Eq. (12) is equal to zero
at ¢=0. And therefore, 1/&(g) is in the region 0 < 1/e(g) < 1 for

(10)

an

12)

13)
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Fig. 1. Szz(gq) of molten AgBr (solid line) and CuBr (dashed line).

any positive values of Szz(g). At this point, it should be stressed
that the validity of Egs. (10) and (12) is also confirmed by this
fact in the meaning of screening; 1/e(g) remains positive for all
positive g value.

As mentioned before, Eq. (10) or Eq. (11) is useful to derive
1/e(q) from the experimental partial structure factors. Eq. (3) is
applicable to deriving 1/e(q) from g, (r) by computer simula-
tion. As examples of 1/e(g) for binary ionic melts, we will show
the results of 1/e(g) using experimental Szz(q) for AgBr and
CuBr. As mentioned previously, Szz(g) is related to structure
factors and pair distribution functions by Eq. (2). In this case,
the summation in Eq. (2) is taken for ion species Ag or Cu and
Br. The obtained Szz(gq) for molten AgBr at 753 K and CuBr at
810K are shown in Fig. 1. We can see the significant first peaks
in Szz(q) at about 1.8 and 2.0 A1 for molten AgBr and CuBr,
respectively. These peaks correspond to the oscillations of par-
tial structure factors [2,9]. By substituting these Szz(g) into Eq.

08 — 1 /e(q]) for AgBr
) 2,2
.............. 1{1+3(& fq )} for AgBr 1
—eemeee 1/ () for CuBr /
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Fig. 2. 1/e(g) of molten AgBr (solid line) and CuBr (dashed line) with 1/(1 +
B(fcs2 /qz)) for AgBr (dotted line) and CuBr (dashed and double dotted line) for
comparison.

(11), We can obtain the inverse dielectric function 1/e(g). The
calculated results are shown in Fig. 2 with the calculated curve
by Eq. (12) for comparison. It is clearly recognized that 1/e(q)
satisfies the condition 0 < 1/e(g) < 1. We can find the oscillatory
features and the significant minimum at around 1.8 and 2.0 A~!
for AgBr and CuBr, respectively. These features are yielded by
the form of S7z(g) which have large maximum and oscillation.
These results should be attributed to the effect that an ion in
molten salts is susceptible to be surrounded by ions of opposite
sign, which yields the large charge fluctuation and screening
effect.

3. Screening effect for Coulomb potential in molten
noble-metal halides

In a molten salt, the effective screened potential between a
cation and an anion, ¢;'C’ (r), may be divided into two parts, as

() = Grtpe(n) + Pre(r) (14)

Here qb;‘g; «(r)is the direct repulsive potential between cation and
anion in the short-range distance influenced by a small amount of
screening effect, and ¢, ;.(r) is the attractive screened potential
in the long range. Eq. (9) is a poor approximation for the repul-
sive potential because of its highly non-linear functional form.
Therefore, the screening effect for the direct repulsive potential
part should be treated in a different way.

The attractive screened potential ¢;[ «(r) is effectively
screened by the existence of other ions. However, its bare-
potential may be ascribed mainly to the form of Coulomb
interacting potential. The attractive Coulomb potential between
an ion z"e at the origin, and another ion z~e at the distance r is

1262

by (1) =——+ s5)
r

Then, the screened attractive potential in g-space is written
as follows:

2,2
i 4rz7e

- = 16
dtsc(q) 8(Q)q2 (16)
The numerical result for ¢$S_C(r) is given by the inverse
Fourier transformation. In the region of Szz(¢q)~ 1, Eq. (12)
is applicable. Hence, for a symmetric configuration, we have

2,2
i 4rz7e

Parsc(@) = —m (7
This equation is easily converted to the r-dependent expres-
sion as

2,2
arse(r) = — (Z:> exp(—ksr) (18)

which has the form of the product of the Coulomb potential by
the screened part.

A simple treatment of the screening effect for the repulsive
potential is the introduction of multiplicative parameter « to the
repulsive part. Thus, the effective potential between cation and
anion in the region of Szz(q) ~ 1 is expressed as the sum of the
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screened repulsive potential and the screened attractive potential
equation (18), which is expressed as

2.2
¢E () =« (5) _ <Zre ) exp(—ksr) (19)

Therefore, the inverse dielectric function 1/¢(g) as the screen-
ing effect can be multiplied onto the bare attractive inter-ionic
potential between two ions in the g-space and the screening
parameter « is also multiplied onto the repulsive potential in
r-space to obtain the effective screened potential. It is not neces-
sary, however, to apply the dielectric function in the procedure of
the computer simulation, because the simulation itself involves
automatically the screening behaviors and only the utilization
of appropriate bare inter-ionic potentials is required.

From above discussions, it seems interesting to obtain the
screened potential between anion and cation, Ag* or Cu* and
Br™ in molten AgBr and CuBr. Besides, the experimental pair
distribution function, i.e. ggrag(r) and gprcu(r) is obviously dif-
ferent [2,9]. We adopt the potential by Rahman, Vashishta and
Parrinello (RVP) [11] as a bare inter ionic interaction, because
it is often used for noble-metal halides. The RVP type potential
sets for i and j ions are written as

Hj | zizje? Py

Vij(r):m-i- p po,

vy (20)
where the third term is charge—dipole interactions. The adopted
parameters are taken from literature [12,13]. The screened
potentials of molten AgBr and CuBr are obtained by the above
procedure. The results are shown in Figs. 3 and 4, respectively.
In the calculation, we adopt the value of § as 0.50 and 0.40, and
the value of « as 0.1 and 0.05 for AgBr and CuBr, respectively.
The reduction of the depth of potential by screening effect is
obviously recognized in Figs. 3 and 4. The characteristic oscil-
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Fig. 3. The screened potential between Ag—Br (dotted line) with original one
(solid line). (Bottom) The screened potential is also shown with different scale
(top) to show its oscillatory feature.
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Fig. 4. The screened potential between Cu-Br (dotted line) with original one
(solid line). (Bottom) The screened potential is also shown with different scale
(top) to show its oscillatory feature.

lations are found in the screened potentials especially in molten
CuBr, which may be caused by the charge fluctuation in the
distribution of ions.

4. Pair distribution functions

To confirm the results of screened potentials between cations
and anions, we calculate the pair distribution functions by the
potential of mean force U+~ (r), which is defined by the following
equation in relation to g+—(r) [1]:

—U+_(r):|

ks T @h

g+-(r) = exp [
Here we can take the screened potential ¢F~(r) as Ut~ (r),
because Eq. (21) is originally suggested by weak interacting
materials. In the previous work, we have proved that ¢~ (r)
and U*~ (r) are mathematically equivalent, basing our argument
on the Ornstein—Zernike equation [5]. g+_(r) are obtained by
inserting the calculated ¢~ (r) instead of U (r) into Eq. (21).
They are shown in Figs. 5 and 6, together with those obtained
by experiment and molecular dynamics (MD) simulation. The
first peaks of g._(r) almost agree well, though the oscillations
in larger r region are not satisfactory reproduced. This fact may
suggest that the screening effect is considerable especially in
small r region, i.e. about the distance to the first nearest neigh-
bors. In other words, the first nearest neighbor ions have the
main contribution to the screening effects in molten salts.

The discrepancy in the larger r region between g;i(r)’s are
attributed to the difference between ¢~ (r) and U*~(r), which
may be caused by several reasons, in addition to a margin of
calculation error in Fourier transformation. One reason is that
only the Coulomb attractive potential is used to derive ¢t 5, (r),
i.e. the attractive part of RVP type potential —P;;/ #*is not used for
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Fig. 5. g;j(r) for molten AgBr calculated using screened potential (solid line)
with that obtained by experiment (dotted line) and by MD (dashed line).
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Fig. 6. g;j(r) for molten CuBr calculated using screened potential (solid line)
with that obtained by experiment (dotted line) and by MD (dashed line).

simplicity. Another expected reason is that the non-symmetric
structure in solid phase remains in molten phase, which may
obstruct the screening effect in molten phase. In spite of above
facts, however, it may be recognized that the calculated result
for ¢ (r) so as to carry on the above treatment is physically
significant, and the obtained results are obviously affected by
screening effect.

5. Deviation from Nernst-Einstein relation

In the previous sections, we have mainly discussed the
screened pair potentials in connection with the structure and
the dielectric function. In this section, we discuss the influence

of the screening effect on the transport properties. It is known
that there is a deviation from the Nernst—Einstein (NE) relation
of the transport properties in the binary molten salts, which is
defined as [10]:

nZ2€2

ks T

where A is the deviation from NE relation. The equations of
partial conductivities for cation and anion, o* and o~, and the
diffusion constants, D* and D™, in binary molten salts were
already derived in the pervious work on the basis of the linear
response theory [14]. In accordance with these results, we have

oc=0t+0 = < ) (DT + D)1 — A) (22)

Amlo(l— Agg) | — 220 23
=1 {(1/a+)+(1/a)} *)
where
oo 2 o+— +—
aozn/o {85;2 + (i) (3(7; )}g+(r)4rrr2dr
(24)

“=Of [{5+ () (5 )}

2 4+ — +—
+2 { 9 ¢2 + <2> (8¢ )}g+_(r)} dnr?dr (25)
or r or
and

[ A o /3pt(r) 3
Apr = (3kBT> /d (8}’) g+—(nr’dr

where ¢¥(r) is an effective inter-ionic potential between ions i
and j.

In Eq. (26), we can approximate that the parameter d is equal
to the hard-core contact distance between cation and anion on
the condition that both ionic sizes are rigid. This assumption,
however, may not be always valid in the case of heavier weight
atom. In this calculation, we will use the first maximum position
of g._(r) as the distance of ion’s contact. The quantity Agr was
obtained by Berne and Rice [15], though recently certified by
present authors in a different way [14]. Apr is essentially caused
by an asymmetric distribution of the surrounded ions around the
centered ion under an applied external field. Since it has been
found that values of &, ot and &~ are numerically close to one
another, we can take A~ Agr as the deviation from the NE
relation in a molten salt.

In the region of r>d, the differentiation of potential
(0¢*~ (r)/0r) shown in above equations is equal to the mean
force acting on the ion at the origin from other ion of opposite
sign located at the distance r, and therefore, we have to use the
effective screened potential as ¢+~ (r) in above equations [14].
Hence we can use the potential of mean force U™~ (r), instead
of ¢*~(r) in Eq. (26). With Eq. (21), Eq. (26) is converted to the
following form, as

4 o /0gy_
ABr = — (73111) /d (ggr(r)) P dr

(26)

27
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Table 1

Deviation from Nernst-Einstein relation in molten AgBr (753 K) and CuBr
(810K); Apr (calc), Agr (MD) by Eq. (27), Apr (exp), and A (MD*) from
Refs. [12,13]

AgBr CuBr
Agg (calc) —0.48 —0.44
Apr (MD) —0.45 —0.40
Agr (exp) —0.41 —0.49
A (MD¥*) —0.42 —0.46

A(MD*) was calculated using correlation functions.

Using the simulated g, (r) or Ut~ (r) in molten salts, we can
calculate the deviation from NE relation, Agr. In fact, we have
calculated AgR using Eq. (27) with obtained screened potentials
and g;;(r) using Eq. (21), or g;;(r) obtained by experiment.

Using Eq. (27), the value of Agg also can be estimated from
gij(r) obtained by MD. The procedure of MD simulation is essen-
tially same as the previous works [7,8]. We briefly describe as
follows. The MD calculations are carried out for AgBr and CuBr
using 500 atoms (250 cations and 250 anions) placed in a cubic
cell. The periodic boundary condition is used. The Coulomb
interaction is calculated by the Ewald method [16] to avoid a
margin of error yield by cutting of the long tail of Coulomb
potential. The calculation of the structure is curried out on the
condition that the number of the particles, the volume of the
cell and the total energy of the system (NVE) are constant. The
obtained g*~(r) to r~ 12 A are shown in Figs. 5 and 6, which
agree well with those in literature [12,13]. Results of Agr for
molten AgBr and CuBr are shown in Table 1 with the values
taken from literature [12,13]. The values agree within about 20%
error, which suggests the consistency of the theory of screening
effect on the structure and the transport properties in molten
salts.

6. Conclusion

The theory of dielectric screening in molten salt has been re-
examined with the new relation between Szz(q) and 1/¢(g). The
theory has been applied to molten AgBr and CuBr to examine the
screening effect. Screened attractive potentials between cations
and anions have been obtained by inverse Fourier transformation

in g-space. The estimated screened potential has been used as
a potential of mean force in order to obtain g._ (7). The results
have agreed well with those obtained by experiment and MD
simulation especially in small r region. The deviation from the
Nernst—FEinstein relation is also obtained. The discussions and
the theoretical results from various points of view suggest the
consistency of the theory.

Acknowledgements

One of the authors (SM) is grateful to the Ministry of Educa-
tion, Science and Culture for Financial support of Grant-in-Aid
for Science Research. One of authors (ST) expresses his thanks
to Professors S. Takeno and M. Kusakabe of Niigata Institute of
Technology for their helpful instruction for a mathematical treat-
ment. He also wishes to express his cordial thanks to Professor
W.H. Young for fruitful comments on this subject.

References

[1] J.P. Hansen, I.R. McDonald, Theory of Simple Liquids, 2nd ed., Academic
Press, New York, 1986.
[2] M. Saito, S. Kang, K. Sugiyama, Y. Waseda, J. Phys. Soc. Jpn. 68 (1999)
1932-1938.
[3] A. Fasolino, M. Parrinello, M.P. Tosi, Phys. Lett. 66A (1978) 119-121.
[4] M. Aniya, H. Okazaki, M. Kobayashi, Phys. Rev. Lett. 65 (1990)
1474-1477.
[5] T. Koishi, M. Saito, S. Matsunaga, S. Tamaki. Phys. Chem. Liq., in press.
[6] See for example, S. Chandra, Superionic Solids, North-Holland, Amster-
dam, 1981.
[7] S. Matsunaga, Solid State Ionics 176 (2005) 1929-1940.
[8] S. Matsunaga, P.A. Madden, J. Phys.-Condens. Matter 16 (2004) 181—
194.
[9] M. Saito, C. Park, K. Omote, K. Sugiyama, Y. Waseda, J. Phys. Soc. Jpn.
66 (1997) 633-640.
[10] N.H. March, M.P. Tosi, Atomic Dynamics in Liquids, MacMillan Press,
London, 1976.
[11] M. Parrinello, A. Rahman, P. Vashishta, Phys. Rev. Lett. 50 (1983) 1073.
[12] C. Tasseven, J. Trullas, O. Alcaraz, M. Silbert, A. Giro, J. Chem. Phys. 106
(1997) 7286-7294.
[13] AJ. Stafford, M. Silbert, J. Trullas, A. Giro, J. Phys.-Condens. Matter 2
(1990) 6631-6641.
[14] T. Koishi, S. Tamaki, J. Chem. Phys. 123 (2005), 194501-1-194501-11.
[15] B. Bern, S.A. Rice, J. Chem. Phys. 40 (1964) 1347-1362.
[16] P. Ewald, Ann. Phys. 64 (1921) 253.



	Dielectric screening properties in molten noble-metal halides
	Introduction
	Brief summary of charge-charge structure factors in a molten salt
	Screening effect for Coulomb potential in molten noble-metal halides
	Pair distribution functions
	Deviation from Nernst-Einstein relation
	Conclusion
	Acknowledgements
	References


